We can expect 3.4 defects per million opportunities.
.4 ppm means that the opportunities or likelihood that the product/process will fail is 3.4 in a million. like for an instance when you bought a single lottery ticket. the chances of winning is only 3.4 out in a million or 0.00034%. in terms of defects the chances that the single product/process fails is only 3.4 out in a million. it is totally different of saying that producing one million parts you are expecting 3.4 defects which a lot of people misinterpret.

If the DPMO figure was factual data, and not the random value i came up with for my perfect example, would it be safe to say, that a computerized production line that printed Colorado Lottery Scratch Game Tickets, did so with a 3.1DPMO, and level 6 excellent, and not just of good quality. and then add that this game not only looks beautiful but it also has a 1:5 overall winning odds, then odds of winning a top prize jackpot is a 1.8 ppm. is it safe to compare the ppm to DPMO, cause id say the printing process is extremely flawed if the DPMO exceeded the ppm of odds of winning yop prizes. if theres the chance that the defectedtickets that didnt print could actuallt be the top prize winners, and change the odds of winning to odds of losing.